Recombinant Rhodobacter capsulatus xanthine dehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria I in humans.
نویسندگان
چکیده
Rhodobacter capsulatus xanthine dehydrogenase (XDH) forms an (alphabeta)2 heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds. We have developed an efficient system for the recombinant expression of R. capsulatus XDH in Escherichia coli. The recombinant protein shows spectral features and a range of substrate specificities similar to bovine milk xanthine oxidase. However, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. EPR spectra were obtained for the FeS centers of the enzyme showing an axial signal for FeSI, which is different from that reported for xanthine oxidase. X-ray absorption spectroscopy at the iron and molybdenum K-edge and the tungsten LIII-edge have been used to probe the different metal coordinations of variant forms of the enzyme. Based on a mutation identified in a patient suffering from xanthinuria I, the corresponding arginine 135 was substituted to a cysteine in R. capsulatus XDH, and the protein variant was purified and characterized. Two different forms of XDH-R135C were purified, an active (alphabeta)2 heterotetrameric form and an inactive (alphabeta) heterodimeric form. The active form contains a full complement of redox centers, whereas in the inactive form the FeSI center is likely to be missing.
منابع مشابه
The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
The requirement of MobA for molybdoenzymes with different molybdenum cofactors was analyzed in Rhodobacter capsulatus. MobA is essential for DMSO reductase and nitrate reductase activity, both enzymes containing the molybdopterin guanine dinucleotide cofactor (MGD), but not for active xanthine dehydrogenase, harboring the molybdopterin cofactor. In contrast to the mob locus of Escherichia coli ...
متن کاملCrystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus.
Xanthine dehydrogenase (XDH), a complex molybdo/iron-sulfur/flavoprotein, catalyzes the oxidation of hypoxanthine to xanthine followed by oxidation of xanthine to uric acid with concomitant reduction of NAD+. The 2.7 A resolution structure of Rhodobacter capsulatus XDH reveals that the bacterial and bovine XDH have highly similar folds despite differences in subunit composition. The NAD+ bindin...
متن کاملIdentification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria.
Hereditary xanthinuria is classified into three categories. Classical xanthinuria type I lacks only xanthine dehydrogenase activity, while type II and molybdenum cofactor deficiency also lack one or two additional enzyme activities. In the present study, we examined four individuals with classical xanthinuria to discover the cause of the enzyme deficiency at the molecular level. One subject had...
متن کاملActivity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
During the screening for Rhodobacter capsulatus mutants defective in xanthine degradation, one Tn5 mutant which was able to grow with xanthine as a sole nitrogen source only in the presence of high molybdate concentrations (1 mM), a phenotype resembling Escherichia coli mogA mutants, was identified. Unexpectedly, the corresponding Tn5 insertion was located within the moeA gene. Partial DNA sequ...
متن کاملBiochemical characterization of recombinant benzyl alcohol dehydrogenase from Rhodococcus ruber UKMP-5M
Benzyl Alcohol Dehydrogenase (BADH) is an important enzyme for hydrocarbon degradation, which can oxidize benzyl alcohols to aldehydes, while being capable of catalyzing a reversible reaction by reducing benzaldehyde. BADH is a member of medium chain alcohol dehydrogenases, in which zinc and NAD are essential for enzyme activity. This paper describes the expression, purification, and characteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 23 شماره
صفحات -
تاریخ انتشار 2003